设A为n阶矩阵,则A以零为其特征值是A为奇异矩阵(即 A =0)的: A.充分

恬恬2019-12-17  19

问题 设A为n阶矩阵,则A以零为其特征值是A为奇异矩阵(即 A =0)的:A.充分非必要条件 B.必要非充分条件 C.既非充分也非必要条件 D.充分必要条件

选项

答案D

解析提示:可通过下面证明说明。充分性:若矩阵A有特征值0→矩阵A奇异(即 A =0),若λ=0为矩阵A的特征值,则存在非零向量a,使Aa=0a,Aa=0,即齐次线性方程组Ax =0有非零解,故 A =0,故矩阵A为奇异矩阵。必要性:若矩阵A是奇异矩阵,即 A =0→λ=0是矩阵A的特征值,已知A是奇异矩阵, A =0,取λ=0,有 A-λE = A-0E= A =0,λ=0,满足特征方程 A-λE =0,故λ=0 是矩阵A的特征值。
转载请注明原文地址:https://ti.zuoweng.com/ti/ViSNKKKQ