甲、乙、丙三人沿圆形跑道跑步,同时从跑道某一固定点出发,甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙2分钟后遇到丙,再过8分钟第二次遇到乙。...

admin2020-12-24  26

问题 甲、乙、丙三人沿圆形跑道跑步,同时从跑道某一固定点出发,甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙2分钟后遇到丙,再过8分钟第二次遇到乙。已知乙的速度是甲的2/3,圆形跑道的周长为600米,则丙的速度为(    )。

选项 A. 14米/分
B. 15米/分
C. 16米/分
D. 17米/分

答案A

解析行程问题。在环形相遇问题中,任意两者相遇一次所走的路程和为一个周长,因此,甲与乙第二次相遇共走的路程(1200米)是第一次相遇共走的路程(600米)的2倍,由于二者速度不变,设第一次的相遇所用时间为t,则第二次相遇时间应为2t,根据题意有2t=t+2+8,解得t=10分钟。再设甲、乙、丙的速度分别为、、,则(+)10=600,(+V丙)(10+2)=600,又,解得=36米/分,=14米/分。故本题选择A。
转载请注明原文地址:https://ti.zuoweng.com/ti/yUL0KKKQ
相关试题推荐