如图,在长方形ABCD中,已知三角形ABE、三角形ADF与四边形AECF的面积相

书海库2019-12-17  18

问题 如图,在长方形ABCD中,已知三角形ABE、三角形ADF与四边形AECF的面积相等,则三角形AEF与三角形CEF的面积之比是

选项 A.5∶1B.5∶2C.5∶3D.2∶1

答案A

解析第一步,三角形ABE、三角形ADF与四边形AECF的面积相等,则三者各占长方形ABCD面积的1/3。连接辅助线AC,则三角形ACD的面积为长方形的1/2。?[img]/upload/tiku/378/8445093_1.png[/img]第二步,三角形ADF与三角形ACD的高相同,都为AD,三角形高相同,底边之比等于面积之比,则FD:CD=2:3,所以CF=1/3CD,同理CE=1/3BC,因此三角形CEF的面积为长方形面积的1/18,则三角形AEF的面积为长方形面积的1/3-1/18=5/18,所以两者面积之比为5:1。解法二:赋值长方形的长为6,宽为3,则长方形的面积为18。三角形ABE、三角形ADF与四边形AECF的面积相等,则三者的面积各为6。那么FD的长为4,CF长2,则CE的长为1,则三角形CEF的面积为1,三角AEF的面积为6-1=5,则两者的面积之比为5:1。因此,选择A选项。
转载请注明原文地址:https://ti.zuoweng.com/ti/yyIsKKKQ