首页
财务会计
医药卫生
金融经济
考公考编
外语考试
学历提升
职称考试
建筑工程
IT考试
其他
登录
职称考试
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。A.3 B.1 C.-1 D.-3
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。A.3 B.1 C.-1 D.-3
admin
2020-12-24
52
问题
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。
选项
A.3
B.1
C.-1
D.-3
答案
D
解析
因为设f(x)为定义在R上的奇函数,故f(0)=20+2xO+b=0,得6=-1,即当x≥0时f(x)=2x+2x-1,故,f(1)=21+2x1-1=3,故f(-1)=f(1)=-3。
转载请注明原文地址:https://ti.zuoweng.com/ti/7BO8KKKQ
相关试题推荐
高中物理《汽车转弯时的向心力》 【答辩题目解析】 1.向心力根据什么定义的? 2.简单说一下课程的设计思路
初中地理《等高线地形图》 【教师】课件展示:表示高度的方法有哪些?请大家阅读书本,帮我找出相对高度和海拔的定义。 【师生总结】地面某个...
高中数学《函数》 一、考题回顾 二、考题解析 【教学过程】 (一)导出课题 问题2:实例一、实例二、实例三的对应关系在呈...
.密度的概念是通过什么方法定义,你还能举出一些能够利用这种方法定义的物理量吗?
函数零点判定定理与二分法求零点之间有什么关系?【专业知识问题】
下列关于椭圆的论述,正确的是()。 ①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆 ②平面内到定直线和直线外的定点距离之比为大于1的常数的动点轨...
单调性是函数的基本性质之一,针对高中函数的单调性中“增减”函数概念的教学完成以下任务: (1)给出“增减”函数在教学中的重点、难点。 (2)说明“增...
有一个角是直角的平行四边形是矩形,这个定义方式属于()A.公理定义B.属加种差定义C.递归定义D.外延定义
函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。 (1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调...
若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上() A.连续 B.单调 C.可导 D.有界
随机试题
对涉及不动产的具体行政行为从作出之日起超过( )年提起行政诉讼的,人民法院不予
地下连续墙()。
甲公司2015年度销售收入900万元,确定的信用条件为“2/10,1/20,n/
满足安全需要的行为可以是()。【2013年11月二级真题】
突触前抑制发生的原因是由于( ) A.突触前膜兴奋性递质释放量减少 B.突
胰岛A细胞分泌:A.胰岛素B.降钙素C.生长激素D.生长抑素E.胰高血糖素
某教师为强调口语交际与现实生活的关联。将现实生活中常见的口语交际现象作为教学内容。对该做法的分析,不正确的是( )。A、这一做法符合高中口语交际课程的发展方向
2016年G省各级农业生产部门采取有效措施促进生产发展,推进农业结构调整方式。 2016年G省农林牧渔业增加值实现2876.45亿元,同比增长3.6%...
对浅表和深部真菌都有效的药物是A.氯喹B.酮康唑C.吡喹酮D.氟康唑E.奎宁
共用题干 第一篇HumanEvolutionBeingamanhasalwaysbeendangerous.Thereareabout...