初中数学《平行线的判定》 一、考题回顾 二、考题解析 【教学过

恬恬2019-12-17  15

问题 初中数学《平行线的判定》一、考题回顾二、考题解析【教学过程】(一)引入新课提出问题:回忆上节课我们学过的平行线的定义是什么?(二)探索新知学生活动:回忆平行线的定义:提问1:由于直线的无限延伸检验是否相交有困难,那么有没有其他判定方法呢?回忆用直尺和三角尺作平行线方法,引导学生探究三角尺起着怎么样的作用。共同总结:利用三角尺的实质就是做了相等的同位角。教师明确:也就是说,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简单说成:同位角相等,两直线平行。提问2:思考木工用图中的角尺画平行线的道理。学生活动:自主探究木工画平行线的道理。提问3:两条直线被第三条直线所截同时得到同位角相等、内错角相等、同旁内角互补,那么既然有了同位角相等两直线平行,可否通过内错角相等或者同旁内角互补来证明两直线平行呢?学生活动:小组探究。师生归纳总结:平行线判定的另两种方法即内错角相等,两直线平行;同旁内角互补,两直线平行。(三)课堂练习练习题1和练习题2。(四)小结作业提问:今天有什么收获?引导学生回顾:本节课学习的平行线的判定的三种方法。课后作业:思考:到目前为止,我们学习过多少种方法可以判定两直线平行。【板书设计】【答辩题目解析】1.截止到目前,学生掌握的平行线的判定有几种方法?2.在本节课的教学过程中,你是如何设计的?

选项

答案

解析1、四种,第一种为定义法:如果平面内的两条直线不相交,那么两直线平行;第二种:同位角相等,两直线平行;第三种:内错角相等,两直线平行;第四种:同旁内角互补,两直线平行。2、为了实现教学目标,突出重点、突破难点,我将采取讲授式、讨论式、启发式的教学方法。并指导学生独立探索、合作交流、分析归纳的学习方法进行学习。让学生通过多种感官参与到数学活动中去,提升学生对知识点的理解与掌握程度,保证学生能学会本堂课的知识并且会应用。
转载请注明原文地址:https://ti.zuoweng.com/ti/Nsx9KKKQ