高中“方程的根与函数的零点”(第一节课)设定的教学目标如下: ①通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方...

admin2020-12-24  29

问题 高中“方程的根与函数的零点”(第一节课)设定的教学目标如下:
①通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系;
②理解提出零点概念的作用,沟通函数与方程的关系。
③通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系。掌握函数零点存在性的判断。完成下列任务:
(1)根据教学目标,设计一个问题引入,并说明设计意图;
(2)根据教学目标①,设计问题链(至少包含三个问题),并说明设计意图;
(3)根据教学目标③,给出至少一个实例和三个问题,并说明设计意图;
(4)确定本节课的教学重点;
(5)作为高中阶段的基础内容,其难点是什么
(6)本节课的教学内容对后续哪些内容的学习有直接影响

选项

答案

解析(1)问题引入:求方程3x2+6x-l=0的实数根。 变式:解方程氩3x5+6x-l=0的实数根。(一次、二次、三次、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程不能用公式求解。大家课后去阅读本节后的“阅读与思考”。还有如lnx+2x-6=0的实数根很难下手,我们寻求新的角度——函数来解决这个方程的问题。) 设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。通过简单的引导,让学生课后自己阅读相关内容,培养他的自学能力和更广泛的兴趣。开门见山的提出函数思想解决方程根的问题。点明本节课的目标。 (2)问题①:求方程x2-2x-3=0的实数根,并画出函数y= x2-2x-3的图象; 问题②:观察形式上函数y= x2-2x-3与相应方程x2-2x-3=0的联系。 问题③:由于形式上的联系,则方程x2-2x-3=0的实数根在函数y= x2-2x-3的图象中如何体现 设计意图:以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。理解零点是连接函数与方程的结点。 (4)教学重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断。 (5)教学难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点。 (6)本节课是在学生学习了《基本初等函数(I)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定。这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备。
转载请注明原文地址:https://ti.zuoweng.com/ti/jcH8KKKQ
相关试题推荐